matheus__serpa

Untitled

Feb 8th, 2021 (edited)
194
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 0.71 KB | None | 0 0
  1. import numba
  2.  
  3. @numba.njit(parallel=True)
  4. def media(valores):
  5.     soma = 0
  6.     for i in numba.prange(len(valores)):
  7.         soma += valores[i]
  8.     return soma / float(len(valores))
  9.  
  10. @numba.njit(parallel=True)
  11. def covariancia(x, media_x, y, media_y):
  12.     covar = 0.0
  13.     for i in numba.prange(len(x)):
  14.         covar += (x[i] - media_x) * (y[i] - media_y)
  15.     return covar
  16.  
  17. @numba.njit(parallel=True)
  18. def variancia(valores, media):
  19.     soma = 0
  20.     for i in numba.prange(len(valores)):
  21.         soma += (valores[i] - media) ** 2
  22.  
  23.     return soma
  24.  
  25. @numba.jit
  26. def coef_regressao_linear(x, y):
  27.     x_media = media(x)
  28.     y_media = media(y)
  29.     b1 = covariancia(x, x_media, y, y_media) / variancia(x, x_media)
  30.     b0 = y_media - b1 * x_media
  31.     return [b0, b1]
Add Comment
Please, Sign In to add comment